De-scripting Coding Assistants in the Open Source Community

Shepard Rodgers
STS-150: Automation and Al in Historical Context

May 2, 2025



Before it was a programmatic machine, the computer was an occupation; a person who
performed mathematical calculations without the help of an electronic calculator. History is
littered with examples of technologies being named after the jobs or tasks they were intended to
replace: ATMs (Automatic Teller Machines), Autopilot, apps like “Messenger,” and even Robots
(from Czech, “forced labor”).! However, this is not a one-way interaction. Jessa Lingel describes
how the roles of the secretary and typewriter were born from their homonymous precursors, a
desk and a writing machine, with the politics of these technologies being inscribed into the

occupations.?

Today, this reciprocal approach to defining labor and machines can be traced to
open-source software development. This ecosystem is built on mutual contributions and
community-driven programming, with the Pull Request (PR) process providing contributors with
specific feedback on their code and projects with a robust quality assurance system. Recently,
“coding assistants” powered by frontier Al models have been envisioned as a fill-in for the
collaboration that supports open source projects. GitHub Copilot, for example, is named after the
role of a human collaborator in the pair programming process. But Copilot is not a peer—it is
software, embedded into the developer’s environment, offering constant assistance. Here, the
intended purpose of the Al assistant is to transform programming into a seamless, integrated, and
individual process, without an explicit need for human collaboration or feedback. With a coding
assistant, one programmer is suddenly expected to do the work of many. According to this new
regime, they should be faster, more productive, and less reliant on human mentorship. These
assumptions about how the open-source community should be reshaped to match the

expectations of Al-assisted coding fit Madeleine Akrich’s definition of a “script,” as they

' Oxford English Dictionary, “robot (n.1), Etymology,” July 2023, https://doi.org/10.1093/OED/4915451935.
2 Lingel, Jessa. “Alexa, Tell Me about Your Mother’: The History of the Secretary and the End of Secrecy.”
Catalyst, 2020. https://doi.org/10.28968/cftt.v6i1.29949.



describe beliefs about the world into which the technology will be inserted and how the people in

this world will interact with it.>

However, this vision ignores the value of collective contribution in open source
development. One of the core motivations behind this unpaid labor is the opportunity to interact
with a community of developers who are equally passionate about the projects they are
developing. These interactions are a chance to critique code, learn about areas for improvement,
and discuss ideas for a project. When open source developers are siloed into individual
development and expected to produce more code using a flawed and constantly shifting
technology, they will necessarily be driven to push back. Looking at historical examples of how
speedup on the factory floor and surveillance in digitally-organized work have been resisted, a
new path forward appears for open source developers hoping to maintain the constructive

collaboration of their work while benefiting from the ubiquity of Al coding tools like Copilot.

Copilot and the Reimagined Programmer

The early computers of the 1940s could only be programmed in their native language: 1s
and 0s. The need for more intuitive forms of computer programming led to the development of
assembly language in the late 1940s, translating human-readable instructions into binary. The 50s
and 60s saw the rise of compiled languages such as Autocode, FORTRAN, and BASIC, where
the human-written source code would be interpreted as machine code before execution. This
drive to build more user-friendly and powerful programming languages continued for decades,

giving rise to the “high-level” languages of today such as Python and JavaScript, which are built

3 Madeleine, Akrich. “The De-Scription of Technical Objects.” Shaping Technology/Building Society:
Studies in Sociotechnical Change, MIT Press, 1992.



on countless incremental improvements and layers of abstraction to bring computer
programming closer to natural human language.* For technologists, the next logical step in this
progression is the ability to write code using one’s native language, without the need to learn the
details of coding syntax or style. This is how we arrive at the well-intentioned integration of

Artificial Intelligence into the lives of programmers with tools like GitHub Copilot.

Copilot and other coding assistants provide programmers with autocomplete for lines and
blocks of code, the ability to autonomously analyze and debug complex programs, and a chatbox
for requesting fully-written functions, files, or programs. With Copilot, anyone can, in theory, sit
in front of a computer and code up a tool, video game, or website. Those who already have
coding experience are given a built-in collaborator, ready to suggest improvements and instantly
track down their persistent bugs. As a result, the traditional programmer is expected to be “ten
times more productive,” as OpenAl CEO Sam Altman suggested in a recent interview. This has
given rise to the practice of “vibe coding,” wherein the programmer simply describes what they

want to build and the Al does the rest.

In the paradigm of pair programming, a “driver” is responsible for typing on the
keyboard and clicking around the directory, while a “navigator” reviews code and offers
guidance. Coding assistants offer to play the role of either driver or navigator, effectively making
a two-person operation into an individual activity. The spirit of pair programming is embodied in
the Pull Request process, which is initiated whenever a contributor wants to add their code
changes to a larger collaborative project. During a PR, the contributor shares their code with a

project manager for review, and the manager responds with specific feedback, proposing areas

4 Roller, Joshua. “Coding From 1849 to 2022: A Guide to The Timeline of Programming Languages.”
IEEE Computer Society, June 10, 2022.
https://www.computer.org/publications/tech-news/insider-membership-news/timeline-of-programming-lang
uages/.



for improvement. Copilot also promises to be a replacement for this point of interaction, as it can
do the work of reviewing code, fixing mistakes, and merging changes with the main project
branch. Gone are the days of repeatedly alternating between updating and critiquing code
contributions. Ironically, it was GitHub, the inventor of this collaborative PR process, that is
overseeing its demise with Copilot. All of these new capabilities and expectations constitute the
script of the Al coding assistant. Yet, the reality of what the technology can do and how it fits

into the experience of open source programmers is more complicated.

Shortcomings and Incompatibility with Open Source

The open-source community emerged from a tradition of collaborative, non-commercial
software development and has grown into a vast, decentralized ecosystem driven by volunteer
contributors, shared responsibility, and flexible governance. Participation in open-source projects
is driven by a “do-ocracy,” wherein the most collaborative and consistent contributors are
rewarded with greater decision-making power. In the process of engaging with a project,
individual developers learn from PR feedback and retain the freedom to choose how much they
are invested in their work, according to their passions and community preferences. This incentive
structure challenges the script of tools like Copilot, which aim to eliminate the need for

collaborative coding while heightening programmers’ output.

Before analyzing the possibility and impact of replacing human collaborators in the open
source development cycle with Al coding assistants, we must first question whether these
assistants can live up to their advertised capabilities. “Vibe coding” has not yet reached the point

where a programmer could “[give] into the vibes, embrace exponentials, and forget that code



even exists,” as its creator Andrej Karpathy suggested.” The reality is that Al-generated code is
unpredictable. It often excels at syntax but overlooks important aspects of a project, such as
structure, maintainability, and efficiency. Meanwhile, it can introduce invisible bugs and, given
the rapid pace of Al development, its expected output is constantly changing. These aspects
make it harder for developers to understand and fix problems in their code, which demands more
time and effort. The result is that individual programmers are expected to contribute more,
especially by large companies that rely on unpaid programmers to maintain popular open-source
projects, while taking on the extra burden of fixing faulty code and adapting to constantly
shifting technology. This speedup of work paired with labor-intensifying tools mirrors the
experience of workers on the factory floor during the mid-20th century, whose labor acceleration

was justified by new automotive manufacturing machines.®

Even assuming the perfect operation of Copilot and other coding assistants, such that they
could effectively act as an productivity booster and code reviewer, this vision of Al-assisted
coding does not clearly align with the values of open source development. Those who dedicate
themselves to open source development are motivated by the opportunity to learn from one
another, not to be an individualized coding machine. When pair programming and PRs are
automated away, the sharing of ideas is also lost. Contributors can no longer benefit from the
cycle of code review and improvement that has always allowed them to build their skills and
discuss high-level project plans with one another. The assumption of speed over struggle simply

doesn’t align with the open-source approach to coding.

5 Karpathy, Andrej. “Vibe Coding Tweet.” X, February 2, 2025.
https://x.com/karpathy/status/1886192184808149383.

® Resnikoff, Jason. “Labor’s End: How the Promise of Automation Degraded Work .” The American
Historical Review 129, no. 2 (June 1, 2024): 27-29. https://doi.org/10.1093/ahr/rhae044.



Furthermore, vibe coding threatens the do-ocracy that underpins open source
development. When the line between code written by a person and code generated by Copilot is
blurred, it becomes unclear how to recognize top contributors and grant them greater project
ownership. This is especially true if the Al is also reviewing the code, as the interaction between
contributors and maintainers has been completely discarded in favor of efficiency. To preserve
this incentive structure, the open source community must consider how it can build Al coding

assistants around these crucial connections, not vice versa.

De-Scription and Developer Resistance

In resisting their work's speedup and siloed nature, open source developers will need to
find uses for coding assistants that favor collaboration, clarity, and critique over rapid
production. This “de-scription” of the technology to fit the unique characteristics of open source

development will require programmers to resist the assumptions built into tools like Copilot.

Here, we can look to the example of delivery drivers in the UK, who used the inherent
qualities of the algorithmic technology that organized and surveilled them to resist the same
technology’s intent to separate them. Specifically, these drivers saw the fact that the delivery app
would connect them at algorithmically determined meeting points as an opportunity to share
contact information and build an organized network of resistance.” This strategy leveraged
inherent assumptions about how the app would work to defy its built-in restrictions on driver

communication.

" Woodcock, Jamie. “Towards a Digital Workerism: Workers’ Inquiry, Methods, and Technologies.”
NanoEthics 15, no. 1 (April 2021): 87-98. https://doi.org/10.1007/s11569-021-00384-w.



Much like the drivers’ system assumed a need for driver rendezvous, today’s coding
assistants assume a degree of failure due to their purely statistical nature and limited context
window. Their tendency to overlook crucial components of the code’s overall structure provides
a fascinating site for critique and refinement. Herein lies an opportunity to revitalize the
collaborative review process that is so integral to open source projects. By clearly distinguishing
between human-written and Al-generated code, whether through in-line comments or GitHub
annotations, Pull Requests can once again generate meaningful discussion between contributors
and maintainers. Developers can debate why the Al made the decisions it did and contrast these
decisions with their own. In this way, the shortcomings of Copilot’s output could be a learning
opportunity and a chance to demystify the rapidly changing Al ecosystem, while foregrounding
collaboration to improve code and outline best practices, regardless of authorship. Precisely by
exposing the seams in an interaction that is intended to be seamless, we can discover new
moments for constructive community interaction. Even in a distant future where coding
assistants have far outpaced our abilities, effectively making us the assistants, this approach of
discussing stark differences between our code and the AI’s could prove to be invaluable for

understanding this black-boxed technology and benefiting from community engagement.

There’s also the emerging friction around merit incentives for project participation.
Copilot complicates the relationship between effort and recognition. If code can be generated
with minimal input, what does it mean to be a “top contributor”? Developers may begin to value
different signals, such as engagement with others, thoughtful commenting, or efforts to teach and
onboard new contributors. By spotlighting these community-oriented contributions, it becomes

impossible to separate the incentive structure and the collaborative components of open source



development. Meanwhile, the expectations of higher productivity and output are sidelined in

favor of more constructive values.

De-scription in this context is not necessarily a matter of rejecting Al and the coding
assistants it has given rise to. Rather, it’s about preserving the social and interpretive labor of
open source development; labor that Al coding assistants, by design, tend to obscure. In this
resistance, developers have the potential to demonstrate that, while Copilot may script them as
hyper-productive individualized workers, they understand themselves as part of a collective
project. That collective, in response to the friction between its values and the values of

artificially intelligent programming, has the potential to rewrite the script on its own terms.



Works Cited

Karpathy, Andrej. “Vibe Coding Tweet.” X, February 2, 2025.
https://x.com/karpathy/status/1886192184808149383.

Lingel, Jessa. “‘Alexa, Tell Me about Your Mother’: The History of the Secretary and the End of
Secrecy.” Catalyst, 2020. https://doi.org/10.28968/cftt.v611.29949.

Madeleine, Akrich. “The De-Scription of Technical Objects.” Shaping Technology/Building
Society: Studies in Sociotechnical Change, MIT Press, 1992.

Mayya, Varun. “Sam Altman On Miyazaki’s Thoughts on Art, Design Jobs, Indian Al, Is Prompt
Engineering A Job?” YouTube. Accessed May 1, 2025.
https://www.youtube.com/watch?si=s 14PKRuVFRBT5GBx&v=xFvIUVKMPJY &feature

=youtu.be.

Oxford English Dictionary, “robot (n.1), Etymology,” July 2023,
https://doi.org/10.1093/OED/4915451935.

Resnikoff, Jason. “Labor’s End: How the Promise of Automation Degraded Work .” The
American Historical Review 129, no. 2 (June 1, 2024): 27-29.
https://doi.org/10.1093/ahr/rhae044.

Roller, Joshua. “Coding From 1849 to 2022: A Guide to The Timeline of Programming
Languages.” IEEE Computer Society, June 10, 2022.
https://www.computer.org/publications/tech-news/insider-membership-news/timeline-of-

programming-languages/.

Woodcock, Jamie. “Towards a Digital Workerism: Workers’ Inquiry, Methods, and
Technologies.” NanoEthics 15, no. 1 (April 2021): 87-98.
https://doi.org/10.1007/s11569-021-00384-w.



	 
	Copilot and the Reimagined Programmer 
	Shortcomings and Incompatibility with Open Source 
	De-Scription and Developer Resistance 

